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Stress Transfer in Shear Deformable Discontinuous Composites 
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It is well known that the shear lag theory is not to provide sufficiently accurate strengthening 

predictions when the fiber aspect ratio is small. This is due to its neglect of stress transfer across 

the fiber ends and the stress concentrations that exist in the matrix regions near the fiber ends. 

In this paper, a new approach to investigate stress transfer mechanisms in shear detbrmable 

discontinuous composites is proposed to overcome the shortcoming of shear lag theory. The 

modification scheme is based on the replacement of the matrix between fiber ends with the 

fictitious fiber to maintain the compatibility of displacement and traction. Thus, the proposed 

model takes fiber end effects into account and results in fully closed form solutions. It was found 

that the proposed model gives a good agreement with finite element results and has the 

capability to correctly predict the values of interracial shear stresses and local stress variations 

in ~:he small fiber aspect ratio regime. 

Key Words: Shear Lag Theory, Discontinuous Composites. Fiber Aspect Ratio, Fictitious 

Fiber, Interfacial Shear Stress 

1. Introduction 

The tensile load applied to a discontinuous 

fiber o~r whisker reinforced composite is transfer- 

red to reinforcements by a shearing mechanism 

betwee:a the reinforcement and the matrix (Piggot, 

1980). One of the earliest attempts to explain the 

reinforcing effect of fibers was described by Cox 

(1952), and is now referred to as the shear lag 

(SL) model which considers long straight discon- 

tinuous fibers completely embedded in a continu- 

ous matrix. The Cox model was elegant in its 

simplicity and provides accurate estimates of the 

elastic modulus increases due to the fibers when 

the fiber aspect ratio is sufficiently large. Further- 

more, the model is also able to provide the varia- 

tion of internal stresses in both the fiber and 

matrix and a description of the fiber/matrix inter- 

facial shear stresses in the elastic deformation 

regime. However, a major shortcoming of the 

model is its inability to provide sufficiently accu- 
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rate predictions when the fiber aspect ratio is 

small. The predicted modulus by the SL model is 

substantially smaller than the experimentally 

observed modulus in this regime. This is the 

regime applicable to major current short fiber or 

whisker reinforced composites. For example, in 

SiC' whisker reinforced AI alloys, the average 

aspect ratio is only on the order of four (Ar- 

senault, 1984: Nair et al., 1985; Nutt and Need- 

leman, 1987) for which case the original SL 

model does not provide adequate descriptions of 

the stiffening effect of fbers or whiskers as discus- 

sed by Taya and Arsenault (1987). 

It is the purpose of this paper to provide a 

strightforward yet rigorous modification of the 

original SL analysis so as to retain accuracy at 

small reinforcement aspect ratio values by taking 

fiber end effects into account. Starting from first 

principles and using equilibrium and continuity 

conditions, closed form expressions are provided 

for the normal stresses at fiber ends and the 

enhanced local stresses in the matrix end regions. 

It is demonstrated that the modification not only 

results in a correct prediction of the fiber stress 

increases in the small aspect ratio regime when 
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compared to finite element analysis (FEA) 

results, but is also able to correctly predict the 

values of interracial shear stresses and local stress 

variations in the fiber and matrix. In fact, these 

local stress values are critical to the analysis of 

fracture micromechanisms in metal matrix com- 

posites (MMCs) as discussed by Murdeshwar 

(1989). 

Subsequent to the Cox model, rigorous elastic- 

ity models based on variational approach (Ha- 

shin and Shtrikman, 1962, Hashin and Shtrikman+ 

1963) and self-consistent method (Hill, 1965a) 

were developed in order to predict the elastic 

moduli increases in the small aspect ratio regime. 

The variational method originally developed by 

Paul (1960) provides proper bounds to the elastic 

moduli increases but not the local stress values in 

the fiber and surrounding matrix. In fact, the 

self-consistent model was first developed by Her- 

shey (1954) and Krone (1958) as a means to 

model the behavior of polycrystaline materials 

and an extension of the self-consistent scheme to 

muhiphase media was given by Hill (1965b) and 

Budiansky (1965). This method provides approxi- 

mate predictions of composite elastic response 

that explicitly account for phase geometry. Eshel- 

by's ellipsoidal inclusion method (Eshelby, 1957) 

is a basic solution of this type and has also been 

successfully applied to predict both the modulus 

and yield strength of short fiber composites (Taya 

and Arsenault, 1987). However, this model is 

restricted to ellipsoidal reinforcement geometry 

for which case the internal reinforcement stress is 

assumed to be uniform. It is well known that for 

1he case of rod-like fiber geometries, uniform 

reinforcement stresses are obtained only at suffi- 

ciently large aspect ratios. The uniform internal 

reinforcement stress results from the physical 

nature of the ellopsoidal geometry for which case 

both normal and shear load transfer to the rein- 

t\)rcement occurs along the entire inclusion/ 

matrix boundary. For an axially aligned cylindri- 

cal geometry, however, with the load applied in 

the axial direction+ the normal stress transfer 

occurs only at the fiber end and the stress transfer 

along the fiber length is purely of a shear nature. 

This shear stress transfer gives rise to the known 

variation of the fiber axial stresses (Piggot, 1980). 

Accordingly, the SL approach is physically more 

realistic for fiber geometries provided that fiber 

end effects can be rigorously accounted for. 

There have been limited previous attempts to 

modify the SK approach. Muki and Sternberg 

(1969) and Sternberg and Muki (1970) used the 

SE approach in a more refined manner using 

integro-differential equations and have calculated 

the local stresses inside the fiber. However, this 

model assumed that the fiber center stress is given 

by the rule of mixture equation applicable strictly 

only to the long fiber case. Furthermore, Sternber- 

g+s results are not able to be applied to obtain 

expressions for the matrix stress intensification in 

the fiber end region which provides a significant 

contribution to the elastic modulus. Recently, 

Nardone and Prewo (1986) and Nardone (1987) 

attempted to modify the SL model by assuming 

that the fiber end stress was equal to the matrix 

yield stress and further that the matrix average 

stress was also equal to the matrix yield stress. 

This made possible an approximate estimate of 

the macroscopic composite yield strength 

increase, but this approach is clearly not appli- 

cable to the purely elastic regime wherein the 

elastic modulus increase is to be calculated. Taya 

and Arsenault (1989) also attempted to modify 

the original SL approach by assuming that the 

fiber end stress was equal to the average matix 

stress, i.e., the stress concentraion at the fiber ends 

were ignored. 

More recently, Kim and Nair (1990) modified 

the SL analysis by using FEA to provide the fiber 

end normal stresses. Their results of the predicted 

internal stress and elastic modulus increases in 

short fiber reinforced MMCs showed a good 

agreement with FEA results as well as experimen- 

tal data. While their work clearly demonstrates 

that SE solutions have the applicability to the 

short fiber composite provided fiber end effects 

are accounted for, the model does not calculate 

the fiber end stresses from first principles and 

relies instead on FLEA. 

The approach in this work involves replacing 

the matrix region between fiber ends with a ficti- 

tious fiber having the same elastic properties as 
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the matrix and derek)ping convent ional  SL solu- 

lions for both the real and fictitious fiber. Suit- 

able interfacing of  these solutions provides the 

needed results for the local stress and strain 

values. The model  is therfore entirely closed form 

in nature and does not rely on F E A  for any 

parametric values. An axisymmetric F E A  model 

has been implemented to assess the predictions of  

the re:~uhing analytical model  deri~ed in this 

paper. 

2. Theoretical Development 

2.1 Micromechanical  model deduced from 

physical concept 
In composites,  loads are not directly applied on 

the fibers but are applied to the matrix material 

and transferred to the fibers through the fiber 

ends and also through the cylindrical  surface of  

the fiber near the ends. When the length of  a fiber 

is much greater than the length o,,er which the 

translkr of  stress takes place, the end effects can be 

neglected. In the case of  short fiber composi te  or 

discontinuous fiber composite,  The end effects 

cannot be neglected and the composi te  properties 

are fur, ctions of  material and geometrical  parame- 

ters. l-he end effects significantly influence the 

behavior  of  and reinforcing effects in discontinu- 

ous composites.  For  a good understanding of  the 

behavior  of  discont inuous composites,  it is neces- 

sary to first understand the mechanism of stress 

transfer. 

A micromechanical  model  deduced from physi- 

cal concept is described as follows. The discontin- 

uous short fibers are considered to be uniaxially 

aligned with the stress applied in the axial direc- 

tion of  the fibers. The f iber /matr ix  bond is 

assumed to be large and no debonding  is al lowed 

in keeping with the actual situation in many 

MMCs (Nair  et al., 1985). Further,  no plastic 

yielding is al lowed,  that is, both matrix and fiber 

deform in a purely elastic manner.  This  rat ionale 

is an attempt to understand the initial stage of  

composi te  behavior.  The composi te  unit cell or 

representative volume element (RVE)  showing 

the short fiber embedded in a cont inuous  matrix 

is shown in Fig. 1. The  RVE has a length 2L, 

diameter 1), fiber length 2 l  and fiber diameter  d. 

Note that, hereafter, the axial direction is expres- 

sed as .v instead of  z for convenience.  

2.2 Formulation of conventional shear lag 
model 

The free body diagram of  an infinitesimal 

volume having two cross sections is described in 

Fig. 2. The convent ional  SL model  is based on 

the concept that fiber tensile stresses ;are governed 

by an interfacial shear stress parallel to the fiber 

surface as shown in Fig, 2, The surface shear force 

to be in equi l ibr ium with the tensile forces in the 

fiber is 

:rr~da, 2,z~-(Lvr~ (I)  

where 2 ~ ( - d )  is the fiber diameter,  r~, is the 

fiber stress and r.+ is the interfacial shear stress. 

Note that symbols or, and r,-.,: in Fig. 2 have been 

switched as ~, and r~, respect iveb.  Hence, rear- 

ranging and simplifying 

r da ,  (2) 

Shear forces at distance r~ with those at the fiber 

surface r in the composi te  element is 

2 ~,~~ rd.v :: 2 7r~r+(lv ( 3 ) 

Rearranging and simplifying 

F r := r.~ (4) 
Yl 

I r/C",.'A,////V?-/] L--T?7-/-/~.,~ 

I -  2 r + - -  

Fig. 1 

[,'~.J Fiber 
[ .] Matrix 

Composite RVE containing a single fiber in a 
cylindrical matrix volume 
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Here A and f:/ are unknown  constants which 

need to be determined from the following bound-  

ary condi t ions  by assuming that no stress is trans- 

ferred across the fiber ends. 

a , . = 0  at _v + L  (8) 

Thus, 

A =-0 (9) 

B =  c0sh(n,~,i ( I0) 

where x ( -  l . / r )  is fiber aspect ratio. Therefore, 
tiber stress is 

I ' 1 a , = E , s ,  I C0st i ( ) )s)cosh( i ix / r )  (11) 

The interracial shear stress is given by Eqs. (2) 

and t7) :  

r~-  - ~z B s i n h ( n . v / r )  (12) 

Substi tut ing Eq. (10) into Eq. (12) 

nE/-e<.si nh( ~z,W >') 
z:,= 2 c o s h ( n s )  .... (13) 

The typical results of the deformation shape, fiber 

stress and interfacial shear stress are illustrated in 

Fig. 3. 

Fig. 2 Free body diagram describing equilibrium 
condition. F and M represent the fiber and 
the matrix, respectively 

Above two equi l ibr ium condi t ions  (Eqs. (2) and 

(4)) with Hook's  law give the governing differen- 

tial equat ion 

dv.~ = j t  c~ -/5,'.,-~.) (5) 

where 

Ern 
;;z -=-" (I + ~. . . . . . . . .  ~ ...... (6) E , (  ,;.,) l ; ; ( R ,  ; )  

Here, E,, and E., are Young 's  moduli  of  the 

matrix and fiber, respectively, l,{, is the volume 

fraction of  fiver, ~c is the far-field composite 

strain and ~,,, is the Poisson's ratio of the matrix. 

As mentioned above. [? is the unit cell radius. Eq. 

(5) has the solut ion as 

~7, ' E,s~- + A s i n h ( m ' / r )  -~/~cosh( m - / r  ) 
(7) 

( s )  

Fig. 3 

~ I '  i l i i  i i  
; I - i  i ! i ' ~ I  i i 

tl i I iii i i i ' I 

- -  - \- \ " ," ~ " r ~ ~'/~ I :/" -.I 

i' \-.\-:- " -~ -~"' ~ " ~  : 
+ 

! ./://:l !. i :~"!:.~-\!-- 

1 

x 

/ ] ",\  

Single fiber composite element : (a) Un- 
stressed RVE (b) Stressed RVE and (c) The 
fiber/matrix interfacia[ shear stress and fiber 
internal stress for elastic stress transfer 
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2.3 D e r i v a t i o n  o f  new  c losed  form s o l u t i o n s  

In the fol lowing derivat ion of  the modified 

shear lag (MSL)  model,  the short fibers are also 

considered to be uniaxial ly aligned with the stress 

applied in the axial direct ion of  the fibers. As in 

the SL model  (Cox, 1952) the f iber /matr ix  bond 

is assumed to be large and no debonding  is 

al lowed for. Finally,  in this treatment, residual 

stress effects are also neglected. 

The proposed composi te  unit cell (RVE)  show- 

ing the short fiber embedded in a cont inuous  

matrix is shown in Fig. 4. The actual, or real. 

fiber has radius r ,  and length 21.. On either end 

of  the fiber is postulated a fictitious fiber also of  

diameter 2 r  but a length .q--=flalf the spacing 

betweem fiber ends in the composite.  The outer 

surface of  the unit cell can be said to have a 

hexagonal  contour ,  however,  the exact shape is 

not critical in this model,  it is treated thai the unit 

cell is an equivalent  cylinder with radius R.  The 

spatial variable for the real fiber is x, with the 

coordinate  origin at the fiber center, whereas the 

spatial variable for the fictitious fiber is .v* with 

lhe coordinate  origin at the fiber e n d  The differ- 

ent origins are necessary because, as to be shown,  

the governing differential equat ions  in the region 

of  the real and fictitious fiber are different and 

consequently there can be no over lap of  the .v and 

:c* domains.  The two domains  are in contact  at x 

= L ,  or x * = 0 ,  at which point proper  boundary 

condi t ions  need to be applied. Note, in the follow- 

ing, that all variables associated with the fictitious 

fiber will be denoted with a superscript *. At the 

far end of  the unit cell, that is at lhe surface .v*-= 

,t,,-, is applied a uniform constant composi te  strain 

co- Under  these condit ions,  as shown in detail in 

Fig. 4 

[---~- x I ~• 
Schematic of the Woposed composite RVE 
containing a single fiber in a cylindrical 
matrix volume. Matrix end gap regions were 
replaced by fictitious fiber 

the SL model  IPiggot.  1980), the governing equa- 

tion for the fiber stress, oy, and the f iber /matr ix  

inter/octal shear stress, r.~, can be given by the 

same type as Eqs. (5) and (2), respectively. 

In the real fiber regime, Eqs. (1) through (7) are 

still available except for the constants of  Eq. (7) 

which are needed to be changed. 'Thus, we have : 

cb - = E s e  .+ C s i n h ( n x / Y )  

-4- Dcosh( ; ; .v / ; ' )  (14) 

Here, C : = 0  due to symmetry and D is the un- 

known constant which needs to be de~ermined 

from the fol lowing boundary condi t ions  by 

assuming that the siress is transferred across the 

fiber ends. By analogy with that for the reat fiber. 

in the fictitious fiber regime, it tbl lows that the 

governing equat ion for the fictitious fiber is : 

.t(:~;~ . . . . . . .  ~ . . . .  0 ,  - b.;,~,. ) ( 1 5 )  

Since E * --: /? ,,, one obtains 

I 
~z .2 . . . . . . . . . . . . . . . . . . . . . .  (16) 

(1 + >.,)h~(R/r) 

Therefore,  the solution for the fictitious fiber, or 

tile matrix region between fiber ends. is : 

or* =: i-2,,,s<. + C*sinh(~2*.v*/r)  

4- i ) *cosh (  ,l *.v * i ~ ) (17) 

Note that Eq. (17) is a similar  ff)rm of  the solu- 

tion for the real fiber as shown in Eq. (14). 

Presumably.  the interracial shear stress for the 

real fiber is:  

r.~=- - ~ Ds inh( ,z . r /~)  (18) 

In the same fashion, we have the solution tbr 

the fictitious f iber:  

Ks* = 1l* ....... ~ [ C*cosh( it*.v* / ~) 

+ l )*sinh(  aF.v * / r ) ] (19) 

Here, C * a O  since the end regions do not possess 

the symmetry of  the fiber because of  the coordi-  

nate change. Therefore,  the three unknown con- 

stants in F.q. (17) to (19) are D, C* and D*, 

which can be simply determined using the fol low- 

ing boundary condit ions,  To  be satisfied for the 

displacement and traction compat ibi l i ty  : 

or, = <7 at x =  L or  .v* = 0  (20) 
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d o j  day  at . v = L  or x * = 0  (21) 
i v  - d.v* 

v.*=0 at x * = g  (22) 

The first condi t ion  sets the f iber /matr ix  inter- 

facial normal  stress at the fiber end to be the same 

in both regions. The second, requires that the 

shear stress at the f iber /matr ix  interface also be 

the same in the limit x --, L and x* ~" 0. These 

are necessary cont inui ty condit ions.  The final 

condi t ion  is based on the iso-strain condi t ion  of  

the problem, namely, that the applied strain is 

uniform across the transverse boundary of  the 

RVE at x * = g .  This requires that the shear stress 

be also zero at x * = g .  It can then be shown that 

the unknown constants are given by :  

( E ,  - E , ) e .  
D cosg(7,7,:-)-~-T~/.,~*)7,,-fh-(i),:)cotfii ii*.,:*) 123) 

D* = - D( ,z/ , :*)sinh( n s ) c o t h ( H ' s * )  (24) 

C* = - D * t a n h ( H ' s * )  (25) 

where s ( = L / r )  is fiber aspect ratio and s* 

(= . t 4 /v )  is the aspect ratio of  fictitious fiber. 

Hence. the fiber maximum stress a,,, can be 

obtained by setting x = 0  in Eq. (I4) : 

a,,,, = z~,r 4- D (26) 

In the same manner,  the fiber end stress o, can 

also be obtained by setting x * - - 0  in Eq. ([7). 

namely : 

a, = E,,E,. + D* (27) 

It is important  that the stress intensification in 

the fictitious fiber region is represented by Eq. 

(27). 

3. D e s c r i p t i o n  o f  N u m e r i c a l  M o d e l  

The F E A  computa t ions  were performed using 

four-noded axisymmetric isoparametric  elements 

(Cook  et al., 1989) using A N S Y S  program (Koh- 

nke, 1989). Provided the fiber or whisker distribu- 

tion is perfectly uniform, a single fiber model as 

RVE can be selected (Hashin,  1983) as ment ioned 

abo,,e. The RVE selected along with the corre- 

sponding mesh patterns are shown in Figs. 5(a) 

and (b). Two  different RVEs were selected, one, 

based on a single fiber in an quasi-infinite matrix 

using I , = 0 . 5 % ,  (Fig. 5(a)). and two, that corre- 

Fig. 5 

(a) 

- -  . . , , . i . .  m 
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g- 

[ 
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Axisymmetric FEA meshes of RVE at s = 4 in 
case of (a) Quasi-infinite matrix (V, 0.5%) 
and (b) Finite Concentration (V ,  20%) 

sponding to a finite concentrat ion of  20% fibers 

(Fig. 5(b)). In the latter case. the RVE configura-  

tion is similar to thai used previously by Agarwal  

et al. (1974) for a uniform distr ibution o f  fiber 

with an end gap value equal to transverse spacing 

between fibers. In other words, ,~ / 4  ~-. This 

allows tbr compar ison of  volume fraction efl~cts 

by both FEA and the analytical model  developed 

in the previous section. 

For  the boundary condit ions,  the constraint  

condi t ions  were imposed by requiring that the 

longitudinal  cell boundary (side wall) and the 

cell end are undistorted during deformation as 

implemented in the previous work (Nair  and 

Kim, 1991). 

Material properties selected are for AI 2124 as 

matrix and SiC whisker as reinforcement. For  this 

system, typical values are E,,~ --- 67.2 GPa, v,, 0. 

33 for matrix and E ~ = 4 8 0  GPa,  v., 0.17 for 

reinlbrcement (Nair  et al., 1985). 

4. R e s u l t s  a n d  D i s c u s s i o n  

The axial tensile stress in the fiber and matrix 

end region (fictitious fiber) at 0.1% composi te  

strain is given in Fig. 6 for the case o f  a single 

fiber in a quasi-infinite matrix ( [ 4 - 0 . 5 % ) .  For  
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this case, r =  I, L - - 4 ,  g =  I0. s--4,  s * =  I0, N / r  

=7.56, n=0.2281,  i~*--0.6097. The analytical 

result o f  this model (MSL) is compared  to the 

F E A  resuhs as well as to the prediction of  the SL 

m o d e l  As shown in Fig. 6, the fiber stress in the 

SL model  drops to zero as the fiber end region is 

app roached  Further, the tensile stress in the 

matrix end region in the SL model  is assumed 

constant throughout  the gap region and equal to 

the average matrix stress ( : -  /'2,,& ). On the other 50O 

hand, in the MSL model  the fiber stresses are 

significantly higher than that in the SL model. 
400 

These fiber stresses drop off" to a finite interracial ,~ 

value 6, at the fiber end. The tensile stress in the 

matrix end region is not constant  but decreases ~ 300 
t .  

from the value at the fiber and approached the St, 

model predictions at large distances from the fiber 
< 200- 

end. Further,  note that the shape of  the f iber ~ 

tensile stress curve in the MSL model  is not the 

same as that in the SL model because of  the 100- 

different constant values in the SL equat ion solu- 

tions. 

For  finite fiber concentrat ions (V, .=20%),  the 

results are shown in Fig. 7. Numerical  ,,alues 

were set as r = l ,  L 4, g= l , ,~=4 , ,~ '* - - . -  1, N/ ' r  
-----2, 1~:---0.3897 and ;t* = 1.0415. Note from Fig. 7. Fig. 6 

that the matrix stresses in the end gap region are 

throughout  larger than the average matrix stress, 

predicted by the SL model. An interracial value i 
500 

is also larger than that for the 1.)=0.005 case. 

Thus far, fiber end gap stresses and i are increased 

as the fibers come close together along the axial 400 

direction, 

The tensile results of  the MSL model is in both 

qual i ta l ive and quanti tat ive agreement with the ~ 3 ~  

F E A  results, both for the single fiber (Fig. 6) and 
t~ 

finite fitter concentrat ion cases (Fig. 7). However,  "~ 200 

note that the maximum stress predicted at the ..~ ! 

fiber center by the MSL model in Fig. 7 is some- a, l 

what higher than the F E A  result. This is due to 100 

the l n ( R / r )  term in Eq. (6). The  SL and MSL 

model is clearly invalid as R -+ (~ and. in this 0- 

sense, i,; s imilar  to the equat ion for the line ten- 0 

sion o f  dislocations in metallic alloys (Hirth and 

Lothe, 1980). At more realistic fiber concentra-  Fig. 7 

lions, the F E A  and MSL predictions are in better 

agreement as shown in Fig. 7. The MSL model  is 

also not appl icable  in the limit as N - - ,  r .  for, in 

this case. as Eq. (7) and Eq. (17) show, the fiber 

stresses show a singularity. 

Interracial shear stresses at 0.1% composi te  

strain are depicted in Fig. 8 and Fig. 9 lbr I ; - -  

0.005 and !;i,.--0.2, respectively. For  the case of  

the single fiber in an quasi-infinite matrix ( I ,  .... 

0.005). Fig. 8 indicates that the trends in shear 

Fiber Matrix Gap Region 

"",, ..... FEA 
- -  MSL 
- ' -  SL 

\ 

\ 

\ 

0 2 6 8 10 1'2 14 

Normalized Distance from Fiber Center 

Real and fictitious fiber axial stress distribu- 
lions as predicted by Sl_. MSL and FISA al ,~, 

0.1% in case of V, : 0.5% 

Fiber 

~ ,,N\ 

..... FEA X, 
X - -  MSL 

- - - S L  

i i - -  

1 2 

Matrix 
Gap [ 

Region 

3 4 

Normalized Distance from Fiber Center 

Real and fictitious fiber axial stres~ distribu- 
tions as predicted by SI,, MS[, and FEA at ~, 

0.1% in case of \.'~ 20% 
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predicted by SL, MSL and FEA at E~.--0.1% 
in case of V~=20% 

stress show good agreement  between the MSL 

model  and  F E A  predict ions.  Note,  however ,  tha t  

the SL model  does  not  p rov ide  any shear  stress 

values  in the end gap region. The  shear  stresses at 

the f i be r /ma t r i x  interface near  the fiber end is 

s o m e w h a t  underes t imated  in the MSL m o d e l  

again  due to the I M N / r )  term as expla ined  

earlier.  The  predicted shear  stresses in the gap 

region by the MSL model  agree excellently with 

calcula ted F E A  results. For  the more realistic 

case of  |.~ =:0.2, Fig. 9, there is even better  agree- 

ment  between the F E A  shear  stress results and 

that  o f  the MSL model  over  bo th  the f ibe r /ma t r ix  

interface and the matr ix  gap regions. If local 

plast ic  yie lding is dr iven by a Tresca  cr i ter ion,  

Fig. 8 and  9 predict  that  plastici ty would  progress 

bo th  into the gap region from the fiber end  due  to 

the h igh shear  stresses there  as well as towards  the 

fiber center  from the fiber corners  because of  the 

h igh shear  stresses at the f i be r /ma t r ix  interfaces 

near  the fiber end. Consequent ly ,  plast ic yielding 

of  the compos i te  would  commence  at stresses 

lower  than  the macroscopic  matr ix  yield stress. 

These  shear  stress values can then be used to 

est imate the app rox ima te  size of  locally yielded 

zones a r o u n d  the short  fiber ends. T h e  extension 

to the e las to-plast ic  behav io r  will be the subject  o f  

a subsequent  paper.  

On the other  hand ,  the m a x i m u m  fiber stress, as 

shown  in Eq. (26) and  Fig. 10, is p ro p o r t i o n a l  to 

macroscop ic  compos i t e  s train.  Consequen t ly ,  at 

compos i t e  s train close to the matr ix  yield s train 
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Fig.  10 Fiber maximum stresses predicted by SL, 
MSL and FEA as a function of end gap size 
at ~.=0.1% in case of Vf=O,5% 
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(~0.5%) for SiC reinforced AI 2124, the maxi- 

mum fiber stress can be well over 1 GPa. Further, 

it is also dependent on the end gap size as shown 

in Fig. 10. The results are again comparable ~ith 

FEA and show that the fiber stresses are enhan- 

ced when the end gap size is reduced. The high 

stress intensification at the fiber center compared 

to SL predictions is important from the stand- 

point of potential fiber fracture during deforma- 

tion of MMCs. Preliminary result by Murdeshwar 

(19891 suggests that fibers may actually fracture 

during tensile straining of a SiC whisker reinfor- 

ced aluminum alloy. The intensification of stres- 

ses in the matrix end region is also important 

from the standpoint of early plasticity of stresses 

in the matrix end region during deformation of 

the composite. A fracture mechanism proposed by 

Nutt ;and Needleman (19871 involves the nuclea- 

tion of voids in fiber end regions due to the stress 

intensification there resulting in lower ductility 

values for the short fiber reinforced MMC. 

5. Conclusions  

The disadvantage of the conventional shear lag 

model was rigorously modified by coupling the 

fiber to the associated matrix end regions by 

introducing fictitious fiber concept. The results 

provide closed form solutions for the predicted 

local tensile and shear stress values in the fiber 

and matrix. The qualitative and quantitative 

results of local stress predictions match FEA 

result,,; fairly well. When the fiber aspect ratio is 

sufficiently large the modulus predictions of 

modified shear lag model correctly approach 

those of the original shear lag analysis as it 

should. It was found that the shear lag concept is 

useful and simple enough to predict microscopic 

stress and strain variations if the accuracy is 

increased by a reasonable modification. 
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